《MySQL实战》项目文档

#资料下载

数据集与kettle阿里云下载(是伪装成mp4格式的,因为阿里云不让分享压缩包,安装解码器后就可以分离出原文件了):

https://www.aliyundrive.com/s/isM3tAFx5nk 提取码:l2e0

解码器下载:

1
https://pan.baidu.com/s/18prgug55xWsutQTV0B1q_A

提取码: 3v0p

#注意事项

  1. 【留存情况】中11:35处,提醒了“这里漏了,上面那个表的temp_behavior也要改成原表user_behavior”
  2. 【商品按热度分类】中04:37处,order by后面的“品类商品浏览量”不能直接填上一行的别名,应该要填具体的共识,具体详情更正在了【数据可视化结果】中0:30处

#数据集介绍

阿里云天池数据集: User Behavior Data from Taobao for Recommendation

字段 说明
User ID 整数类型,序列化后的用户ID
Item ID 整数类型,序列化后的商品ID
Category ID 整数类型,序列化后的商品所属类目ID
Behavior type 字符串,枚举类型,包括('pv', 'buy', 'cart', 'fav')
Timestamp 行为发生的时间戳
Behavior type 说明
pv 商品详情页pv,等价于点击
buy 商品购买
cart 将商品加入购物车
fav 收藏商品

#kettle的安装

#安装jdk8

Java开发工具包jdk

百度搜索 windows|mac 安装jdk8

https://www.oracle.com/java/technologies/javase/javase8-archive-downloads.html

注意mac用户无论是intel还是苹果自家芯片都下载intel版的jdk8

一定是1.8版本的

#安装kettle

百度搜索 windows|mac 安装kettle

下载kettle

https://sourceforge.net/projects/pentaho/files/

下载mysql驱动mysql-connector-java

各版本下载地址:Maven Repository: mysql » mysql-connector-java (mvnrepository.com)

#运行kettle

  1. 将mysql驱动(.jar文件)放在bin目录下
  2. 进入data-integration目录下命令行运行 spoon.sh

Mac M1报错,需要设置强制用intel模式运行 spoon.sh:

1
arch -x86_64 ./spoon.sh

#Mac用户之包装成App

How to create simple Mac apps from shell scripts · Mathias Bynens

appify.sh文件:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
#!/bin/bash

if [ "$1" = "-h" -o "$1" = "--help" -o -z "$1" ]; then cat <<EOF
appify v3.0.1 for Mac OS X - http://mths.be/appify
Creates the simplest possible Mac app from a shell script.
Appify takes a shell script as its first argument:
    `basename "$0"` my-script.sh
Note that you cannot rename appified apps. If you want to give your app
a custom name, use the second argument:
    `basename "$0"` my-script.sh "My App"
Copyright (c) Thomas Aylott <http://subtlegradient.com/>
Modified by Mathias Bynens <http://mathiasbynens.be/>
EOF
exit; fi

APPNAME=${2:-$(basename "$1" ".sh")}
DIR="$APPNAME.app/Contents/MacOS"

if [ -a "$APPNAME.app" ]; then
	echo "$PWD/$APPNAME.app already exists :("
	exit 1
fi

mkdir -p "$DIR"
cp "$1" "$DIR/$APPNAME"
chmod +x "$DIR/$APPNAME"

echo "$PWD/$APPNAME.app"

kettle.sh文件:

1
2
3
#!/bin/bash
cd ~/MySQL实战/data-integration
arch -x86_64 ./spoon.sh 

然后

1
appify kettle.sh "kettle"

就形成了 kettle.app

可以用alfred查找快速打开(聚焦搜索🔍查找不到)

#快速导入一亿条数据

#数据库准备

1
2
3
4
create database taobao;
use taobao;

create table user_behavior (user_id int(9), item_id int(9), category_id int(9), behavior_type varchar(5), timestamp int(14) );

#kettle配置

连接池100 最大空闲空间100 默认提交取消

参数配置

字段
useServerPrepStmts false
useCompression true
rewriteBatchedStatements true

线程10-20个左右

#数据预处理

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
use taobao;
desc user_behavior;
select * from user_behavior limit 5;

-- 改变字段名
alter table user_behavior change timestamp timestamps int(14);
desc user_behavior;

-- 检查空值 
select * from user_behavior where user_id is null;
select * from user_behavior where item_id is null;
select * from user_behavior where category_id is null;
select * from user_behavior where behavior_type is null;
select * from user_behavior where timestamps is null;

-- 检查重复值 
select user_id,item_id,timestamps from user_behavior
group by user_id,item_id,timestamps
having count(*)>1;

-- 去重 
alter table user_behavior add id int first;
select * from user_behavior limit 5;
alter table user_behavior modify id int primary key auto_increment;

delete user_behavior from
user_behavior,
(
select user_id,item_id,timestamps,min(id) id from user_behavior
group by user_id,item_id,timestamps
having count(*)>1
) t2
where user_behavior.user_id=t2.user_id
and user_behavior.item_id=t2.item_id
and user_behavior.timestamps=t2.timestamps
and user_behavior.id>t2.id;

-- 新增日期:date time hour
-- 更改buffer值
show VARIABLES like '%_buffer%';
set GLOBAL innodb_buffer_pool_size=1070000000;
-- datetime
alter table user_behavior add datetimes TIMESTAMP(0);
update user_behavior set datetimes=FROM_UNIXTIME(timestamps);
select * from user_behavior limit 5;
-- date
alter table user_behavior add dates char(10);
alter table user_behavior add times char(8);
alter table user_behavior add hours char(2);
-- update user_behavior set dates=substring(datetimes,1,10),times=substring(datetimes,12,8),hours=substring(datetimes,12,2);
update user_behavior set dates=substring(datetimes,1,10);
update user_behavior set times=substring(datetimes,12,8);
update user_behavior set hours=substring(datetimes,12,2);
select * from user_behavior limit 5;

-- 去异常 
select max(datetimes),min(datetimes) from user_behavior;
delete from user_behavior
where datetimes < '2017-11-25 00:00:00'
or datetimes > '2017-12-03 23:59:59';

-- 数据概览 
desc user_behavior;
select * from user_behavior limit 5;
SELECT count(1) from user_behavior; -- 100095496条记录

#获客情况

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
-- 创建临时表 
create table temp_behavior like user_behavior;

-- 截取 
insert into temp_behavior
select * from user_behavior limit 100000;

select * from temp_behavior;

-- pv 
select dates
,count(*) 'pv'
from temp_behavior
where behavior_type='pv'
GROUP BY dates;
-- uv 
select dates
,count(distinct user_id) 'pv'
from temp_behavior
where behavior_type='pv'
GROUP BY dates;

-- 一条语句 
select dates
,count(*) 'pv'
,count(distinct user_id) 'uv'
,round(count(*)/count(distinct user_id),1) 'pv/uv'
from temp_behavior
where behavior_type='pv'
GROUP BY dates;

-- 处理真实数据 
create table pv_uv_puv (
dates char(10),
pv int(9),
uv int(9),
puv decimal(10,1)
);

insert into pv_uv_puv
select dates
,count(*) 'pv'
,count(distinct user_id) 'uv'
,round(count(*)/count(distinct user_id),1) 'pv/uv'
from user_behavior
where behavior_type='pv'
GROUP BY dates;

select * from pv_uv_puv

delete from pv_uv_puv where dates is null;

#留存情况

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
select * from user_behavior where dates is null;
delete from user_behavior where dates is null;


select user_id,dates 
from temp_behavior
group by user_id,dates;

-- 自关联 
select * from 
(select user_id,dates 
from temp_behavior
group by user_id,dates
) a
,(select user_id,dates 
from temp_behavior
group by user_id,dates
) b
where a.user_id=b.user_id;

-- 筛选 
select * from 
(select user_id,dates 
from temp_behavior
group by user_id,dates
) a
,(select user_id,dates 
from temp_behavior
group by user_id,dates
) b
where a.user_id=b.user_id and a.dates<b.dates;

-- 留存数 
select a.dates
,count(if(datediff(b.dates,a.dates)=0,b.user_id,null)) retention_0
,count(if(datediff(b.dates,a.dates)=1,b.user_id,null)) retention_1
,count(if(datediff(b.dates,a.dates)=3,b.user_id,null)) retention_3 from

(select user_id,dates 
from temp_behavior
group by user_id,dates
) a
,(select user_id,dates 
from temp_behavior
group by user_id,dates
) b
where a.user_id=b.user_id and a.dates<=b.dates
group by a.dates

-- 留存率 
select a.dates
,count(if(datediff(b.dates,a.dates)=1,b.user_id,null))/count(if(datediff(b.dates,a.dates)=0,b.user_id,null)) retention_1
from
(select user_id,dates 
from temp_behavior
group by user_id,dates
) a
,(select user_id,dates 
from temp_behavior
group by user_id,dates
) b
where a.user_id=b.user_id and a.dates<=b.dates
group by a.dates

-- 保存结果 
create table retention_rate (
dates char(10),
retention_1 float 
);

insert into retention_rate 
select a.dates
,count(if(datediff(b.dates,a.dates)=1,b.user_id,null))/count(if(datediff(b.dates,a.dates)=0,b.user_id,null)) retention_1
from
(select user_id,dates 
-- from temp_behavior
-- 纠错,这里漏改为原表了
from user_behavior
group by user_id,dates
) a
,(select user_id,dates 
from user_behavior
group by user_id,dates
) b
where a.user_id=b.user_id and a.dates<=b.dates
group by a.dates

select * from retention_rate

-- 跳失率 
-- 跳失用户  -- 88
select count(*) 
from 
(
select user_id from user_behavior
group by user_id
having count(behavior_type)=1
) a


select sum(pv) from pv_uv_puv; -- 89660670

-- 88/89660670

#时间序列分析

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
-- 统计日期-小时的行为
select dates,hours
,count(if(behavior_type='pv',behavior_type,null)) 'pv'
,count(if(behavior_type='cart',behavior_type,null)) 'cart'
,count(if(behavior_type='fav',behavior_type,null)) 'fav'
,count(if(behavior_type='buy',behavior_type,null)) 'buy'

from temp_behavior
group by dates,hours
order by dates,hours

-- 存储 
create table date_hour_behavior(
dates char(10),
hours char(2),
pv int,
cart int,
fav int,
buy int);

-- 结果插入 
insert into date_hour_behavior
select dates,hours
,count(if(behavior_type='pv',behavior_type,null)) 'pv'
,count(if(behavior_type='cart',behavior_type,null)) 'cart'
,count(if(behavior_type='fav',behavior_type,null)) 'fav'
,count(if(behavior_type='buy',behavior_type,null)) 'buy'

from user_behavior
group by dates,hours
order by dates,hours

select * from date_hour_behavior;

#用户转化率分析

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
-- 统计各类行为用户数 
select behavior_type
,count(DISTINCT user_id) user_num
from temp_behavior
group by behavior_type
order by behavior_type desc;

-- 存储 
create table behavior_user_num(
behavior_type varchar(5),
user_num int);

insert into behavior_user_num
select behavior_type
,count(DISTINCT user_id) user_num
from user_behavior
group by behavior_type
order by behavior_type desc;

select * from behavior_user_num

select 672404/984105 -- 这段时间购买过商品的用户的比例

-- 统计各类行为的数量 
select behavior_type
,count(*) user_num
from temp_behavior
group by behavior_type
order by behavior_type desc;

-- 存储 
create table behavior_num(
behavior_type varchar(5),
behavior_count_num int);

insert into behavior_num
select behavior_type
,count(*) behavior_count_num
from user_behavior
group by behavior_type
order by behavior_type desc;

select * from behavior_num

select 2015807/89660670 -- 购买率 

select (2888255+5530446)/89660670 -- 收藏加购率

#行为路径分析

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
select '难度增加'
drop view user_behavior_view
drop view user_behavior_standard
drop view user_behavior_path
drop view path_count 

create view user_behavior_view as
select user_id,item_id
,count(if(behavior_type='pv',behavior_type,null)) 'pv'
,count(if(behavior_type='fav',behavior_type,null)) 'fav'
,count(if(behavior_type='cart',behavior_type,null)) 'cart'
,count(if(behavior_type='buy',behavior_type,null)) 'buy'
from temp_behavior
group by user_id,item_id

-- 用户行为标准化  
create view user_behavior_standard as
select user_id
,item_id
,(case when pv>0 then 1 else 0 end) 浏览了
,(case when fav>0 then 1 else 0 end) 收藏了
,(case when cart>0 then 1 else 0 end) 加购了
,(case when buy>0 then 1 else 0 end) 购买了
from user_behavior_view

-- 路径类型 

create view user_behavior_path as
select *,
concat(浏览了,收藏了,加购了,购买了) 购买路径类型
from user_behavior_standard as a
where a.购买了>0


-- 统计各类购买行为数量 
create view path_count as
select 购买路径类型
,count(*) 数量
from user_behavior_path
group by 购买路径类型
order by 数量 desc

-- 人话表
create table renhua(
path_type char(4),
description varchar(40));

insert into renhua 
values('0001','直接购买了'),
('1001','浏览后购买了'),
('0011','加购后购买了'),
('1011','浏览加购后购买了'),
('0101','收藏后购买了'),
('1101','浏览收藏后购买了'),
('0111','收藏加购后购买了'),
('1111','浏览收藏加购后购买了')

select * from renhua

select * from path_count p 
join renhua r 
on p.购买路径类型=r.path_type 
order by 数量 desc

-- 存储 
create table path_result(
path_type char(4),
description varchar(40),
num int);


create view user_behavior_view as
select user_id,item_id
,count(if(behavior_type='pv',behavior_type,null)) 'pv'
,count(if(behavior_type='fav',behavior_type,null)) 'fav'
,count(if(behavior_type='cart',behavior_type,null)) 'cart'
,count(if(behavior_type='buy',behavior_type,null)) 'buy'
from user_behavior
group by user_id,item_id

-- 用户行为标准化  
create view user_behavior_standard as
select user_id
,item_id
,(case when pv>0 then 1 else 0 end) 浏览了
,(case when fav>0 then 1 else 0 end) 收藏了
,(case when cart>0 then 1 else 0 end) 加购了
,(case when buy>0 then 1 else 0 end) 购买了
from user_behavior_view

-- 路径类型 

create view user_behavior_path as
select *,
concat(浏览了,收藏了,加购了,购买了) 购买路径类型
from user_behavior_standard as a
where a.购买了>0


-- 统计各类购买行为数量 
create view path_count as
select 购买路径类型
,count(*) 数量
from user_behavior_path
group by 购买路径类型
order by 数量 desc


insert into path_result
select path_type,description,数量 from
path_count p 
join renhua r 
on p.购买路径类型=r.path_type 
order by 数量 desc

select * from path_result

select sum(buy)
from user_behavior_view
where buy>0 and fav=0 and cart=0

 -- 1528016
 
 select 2015807-1528016 -- 487791
 
 select 487791/(2888255+5530446)

#RFM模型

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
-- 最近购买时间 
select user_id
,max(dates) '最近购买时间'
from temp_behavior
where behavior_type='buy'
group by user_id
order by 2 desc;

-- 购买次数 
select user_id
,count(user_id) '购买次数'
from temp_behavior
where behavior_type='buy'
group by user_id
order by 2 desc;

-- 统一 
select user_id
,count(user_id) '购买次数'
,max(dates) '最近购买时间'
from user_behavior
where behavior_type='buy'
group by user_id
order by 2 desc,3 desc;

-- 存储
drop table if exists rfm_model;
create table rfm_model(
user_id int,
frequency int,
recent char(10)
);

insert into rfm_model
select user_id
,count(user_id) '购买次数'
,max(dates) '最近购买时间'
from user_behavior
where behavior_type='buy'
group by user_id
order by 2 desc,3 desc;

-- 根据购买次数对用户进行分层 
alter table rfm_model add column fscore int;

update rfm_model
set fscore = case
when frequency between 100 and 262 then 5
when frequency between 50 and 99 then 4
when frequency between 20 and 49 then 3
when frequency between 5 and 20 then 2
else 1
end

-- 根据最近购买时间对用户进行分层 
alter table rfm_model add column rscore int;

update rfm_model
set rscore = case
when recent = '2017-12-03' then 5
when recent in ('2017-12-01','2017-12-02') then 4
when recent in ('2017-11-29','2017-11-30') then 3
when recent in ('2017-11-27','2017-11-28') then 2
else 1
end

select * from rfm_model

-- 分层
set @f_avg=null;
set @r_avg=null;
select avg(fscore) into @f_avg from rfm_model;
select avg(rscore) into @r_avg from rfm_model;

select *
,(case
when fscore>@f_avg and rscore>@r_avg then '价值用户'
when fscore>@f_avg and rscore<@r_avg then '保持用户'
when fscore<@f_avg and rscore>@r_avg then '发展用户'
when fscore<@f_avg and rscore<@r_avg then '挽留用户'
end) class
from rfm_model

-- 插入
alter table rfm_model add column class varchar(40);
update rfm_model
set class = case
when fscore>@f_avg and rscore>@r_avg then '价值用户'
when fscore>@f_avg and rscore<@r_avg then '保持用户'
when fscore<@f_avg and rscore>@r_avg then '发展用户'
when fscore<@f_avg and rscore<@r_avg then '挽留用户'
end


-- 统计各分区用户数
select class,count(user_id) from rfm_model
group by class

#商品按热度分类

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
-- 统计商品的热门品类、热门商品、热门品类热门商品
select category_id
,count(if(behavior_type='pv',behavior_type,null)) '品类浏览量'
from temp_behavior
GROUP BY category_id
order by 2 desc
limit 10

select item_id
,count(if(behavior_type='pv',behavior_type,null)) '商品浏览量'
from temp_behavior
GROUP BY item_id
order by 2 desc
limit 10

select category_id,item_id,
品类商品浏览量 from
(
select category_id,item_id
,count(if(behavior_type='pv',behavior_type,null)) '品类商品浏览量'
-- ,rank()over(partition by category_id order by '品类商品浏览量' desc) r
-- 纠错,'品类商品浏览量'这里不能指代count(if(behavior_type='pv',behavior_type,null))因为还没返回
,rank()over(partition by category_id order by count(if(behavior_type='pv',behavior_type,null)) desc) r
from temp_behavior
GROUP BY category_id,item_id
order by 3 desc
) a
where a.r = 1
order by a.品类商品浏览量 desc
limit 10

-- 存储 

create table popular_categories(
category_id int,
pv int);
create table popular_items(
item_id int,
pv int);
create table popular_cateitems(
category_id int,
item_id int,
pv int);


insert into popular_categories
select category_id
,count(if(behavior_type='pv',behavior_type,null)) '品类浏览量'
from user_behavior
GROUP BY category_id
order by 2 desc
limit 10;


insert into popular_items
select item_id
,count(if(behavior_type='pv',behavior_type,null)) '商品浏览量'
from user_behavior
GROUP BY item_id
order by 2 desc
limit 10;

insert into popular_cateitems
select category_id,item_id,
品类商品浏览量 from
(
select category_id,item_id
,count(if(behavior_type='pv',behavior_type,null)) '品类商品浏览量'
,rank()over(partition by category_id order by '品类商品浏览量' desc) r
from user_behavior
GROUP BY category_id,item_id
order by 3 desc
) a
where a.r = 1
order by a.品类商品浏览量 desc
limit 10


select * from popular_categories;
select * from popular_items;
select * from popular_cateitems;

#商品转化率分析

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
-- 特定商品转化率
select item_id
,count(if(behavior_type='pv',behavior_type,null)) 'pv'
,count(if(behavior_type='fav',behavior_type,null)) 'fav'
,count(if(behavior_type='cart',behavior_type,null)) 'cart'
,count(if(behavior_type='buy',behavior_type,null)) 'buy'
,count(distinct if(behavior_type='buy',user_id,null))/count(distinct user_id) 商品转化率
from temp_behavior
group by item_id
order by 商品转化率 desc


-- 保存 
create table item_detail(
item_id int,
pv int,
fav int,
cart int,
buy int,
user_buy_rate float);

insert into item_detail
select item_id
,count(if(behavior_type='pv',behavior_type,null)) 'pv'
,count(if(behavior_type='fav',behavior_type,null)) 'fav'
,count(if(behavior_type='cart',behavior_type,null)) 'cart'
,count(if(behavior_type='buy',behavior_type,null)) 'buy'
,count(distinct if(behavior_type='buy',user_id,null))/count(distinct user_id) 商品转化率
from user_behavior
group by item_id
order by 商品转化率 desc;

select * from item_detail;

-- 品类转化率 

create table category_detail(
category_id int,
pv int,
fav int,
cart int,
buy int,
user_buy_rate float);

insert into category_detail
select category_id
,count(if(behavior_type='pv',behavior_type,null)) 'pv'
,count(if(behavior_type='fav',behavior_type,null)) 'fav'
,count(if(behavior_type='cart',behavior_type,null)) 'cart'
,count(if(behavior_type='buy',behavior_type,null)) 'buy'
,count(distinct if(behavior_type='buy',user_id,null))/count(distinct user_id) 品类转化率
from user_behavior
group by category_id
order by 品类转化率 desc;

select * from category_detail;